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Abstract

Consistent subset of a semigroup is important subset of semigroups
in Bishop’s constructive mathematics. In this article we introduce no-
tion of quotient [A : x] of consistent subset A by an element x of commu-
tative semigroup and research its properties. Besides, we give (without
the axiom of choose) a construction of the maximal strongly extensional
consistent subset C(x) of semigroup for any element x of semigroup such
that x �� C(x). At the end of this investigation, we give some applica-
tions.
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1 Introduction and preliminaries

This investigation is in Semigroup Theory within Constructive Algebra, in
sense of the book [1], [3] and [11] and papers [5]-[10]. Constructive Mathemat-
ics is developed on Constructive Logic (or Intuitionistic Logic) - logic without
the Law of Excluded Middle: P ∨ ¬P . We have to note that ’the crazy ax-
iom’ ¬P =⇒ (P =⇒ Q) is included in the Constructive Logic. Precisely, in
Constructive Logic the ’Double Negation Law’ P ⇐⇒ ¬¬P does not hold,
but the following implication P =⇒ ¬¬P holds even in Minimal Logic. In

1Supported by the Ministry of sciences and technology of the Republic of Srpska, Banja
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Constructive Logic ’Weak Law of Excluded Middle’ ¬P ∨¬¬P does not hold.
It is interesting that in Constructive Logic the following deduction principle
A∨B,¬A � B holds, but this is impossible to prove without ’the crazy axiom’.
An advantage of working in this manner is that proofs and results have more
interpretations. On one hand, Bishop’s Constructive Mathematics is consis-
tent with the traditional mathematics. On the other hand, the results can be
interpreted recursively or intuitively. If we are working constructively, the first
problem is to obtain appropriate substitutes of the classical definitions.

Throughout this paper, S = (S, =, �=, ·) always denotes a commutative semi-
group with apartness in the sense of the books [3], [4], [11] and papers [5]-[10].
The apartness ”�= ” on S is a binary relation with the following properties:
For every elements x, y and z in S, it holds:

¬(x �= x), x �= y =⇒ y �= x, x �= y ∧ y = z =⇒ x �= z,
x �= z =⇒ (∀t ∈ S)(x �= t ∨ t �= z).

It takes that the semigroup operation is strongly extensional, in the following
sense

(∀a, b, x, y ∈ S)((ay �= by =⇒ a �= b) ∧ (xa �= xb =⇒ a �= b)).

Example 1: (1) Let ℘(X) be power-set of set X. If for subsets A, B of X
we define A �= B if and only if (∃a ∈ A)¬(a ∈ B) or (∃b ∈ B)¬(b ∈ A), then
the relation ”�= ” is diversity relation on ℘(X) but it is not an apartness.

(2) ([4]) The relation �=, defined on the set QN by

f �= g ⇐⇒ (∃k ∈ N)(∃n ∈ N)(m ≥ n =⇒ |f(m) − g(m)| > k−1),

is an apartness on QN . �
Let T be a subset of S. We say that it is:

(i) Strongly extensional subset ([1], [3]) iff (∀x, y ∈ S)(x ∈ T =⇒ x �= y ∨ y ∈
T );
(ii) Consistent subset ([2]) iff (∀x, y ∈ S)(xy ∈ T =⇒ x ∈ T ∧ y ∈ T );
(iii) Prime subset of S iff (∀x, y ∈ S)(x ∈ T ∧ y ∈ T =⇒ xy ∈ T );
(iv) Semiprime subset of S iff (∀x ∈ S)(x ∈ T =⇒ x2 ∈ T );
(v) Potent-semiprime subset of S iff (∀x ∈ S)(∀n ∈ N)(x ∈ T =⇒ xn ∈ T ).

If T is a subset of S, we define coradical of T by cr(T ) = {x ∈ T : (∀n ∈
N)(xn ∈ T )}. Strongly extensional consistent prime (semiprime, potent-
semiprime) subset T of S is a filter (semi filter, potent-semifilter ) of S. It
is easy to show that cr(T ) ⊆ T and cr(T ) = T if and only if T is a potent
semifilter of S. For a subset T we say that it is primary if the implication
x ∈ T ∧ y ∈ cr(T ) =⇒ xy ∈ T holds. Besides, if T is primary, then cr(T ) is a
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filter of S. Finally, if T is a strongly extensional consistent subset of S, then
∪F ⊆ cr(T ) holds, where the union is over all filters of S under T .

Example 2: Let S be the set{(
0 0
xx

)
,

(
0 x
0 0

)
,

(
0 0
0 x

)
,

(
xx
0 0

)
,

(
1 0
0 1

)
: x ∈ R ∧ 0 ≤ x ≤ 1

2

}
.

The operation on S is the usual matrix multiplication. Then S is a semigroup
with apartness. The set Q = {f ∈ S : f �= 0} is a consistent subset of S and
the set {(

0 0
xx

)
,

(
xx
0 0

)
,

(
0 0
0 x

)
,

(
1 0
0 1

)
: x ∈ R ∧ 0 ≤ x ≤ 1

2

}

is cr(Q). Let us note that cr(Q) is not a consistent subset of S: if x �= 0 and
y �= 0, then

cr(Q) �
(

0 0
0 xy

)
=

(
0 0
y y

)
·
(

0 x
0 0

)
.�

Let x be an element of S and A a subset of S. We write x �� A iff (∀a ∈
A)(x �= a), and A′ = {x ∈ S : x �� A} (A′ is the strong compliment of A). For
a subset A of semigroup S we shall say that it is detachable in S if and only if

(∀x ∈ S)(x ∈ T ∨ ¬(y ∈ T )).

Remark 1.1 It is easy to show that if A is a consistent subset of semigroup S,
then A′ is an ideal of S. Indeed, let x ∈ A′ ∨ y ∈ A′ and let a be an arbitrary
element of A. Then, we have a �= xy or xy ∈ A by strongly extensionality of
A. In the second case we have conclusion x ∈ A ∧ y ∈ A, which is impossible
because x �� A or y �� A. So, we conclude xy �� A because a �= xy holds for
every a in A, i.e. the set A′ is an ideal of S. Let us note that the opposite
assertion ”If J is an ideal of semigroup S then J ′ is a consistent subset if S”
is not valid in general case.

At first, semigroup with apartness was defined and studied by Heyting. After
that, several authors have worked on this important topic, as for example:
Mines ([4]) Richman ([4]), Troelstra and van Dalen ([11]), and the author
(artickles [5]-[10]).

For undefined notions and notations in Constructive mathematics we refer to
[1], [3], [4], [5]-[10] and [11], and in the Semigroup Theory we refer to the book
[2].

Let q be a relation on semigroup S. For q we say that it is a coequality relation
if and only if it is consistent, symmetric and cotransitive relation on S

q ⊆ �=, q−1 = q, q ⊆ q ∗ q,
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where ”∗ ” is the filled product of relations (see, for example [5] or [8]) If
the coequality relation q is compatible with the semigroup operation in the
following sense

(∀x, y, a, b ∈ S)((xay, ayb) ∈ q =⇒ (x, y) ∈ q),

we say that q is anticongruence on S.

Consistent subsets of semigroups are very important in the semigroup theory.
As a matter of fact, we have the following very interesting proposition in
which we give a construction of a coequality relation on semigroup using of a
consistent subset of semigroup:

Lemma 1.2 Let A be a strongly extensional consistent subset of S. Then the
relation qA on S, defined by

(x, y) ∈ qA ⇐⇒ x �= y ∧ (x ∈ A ∨ y ∈ A),

is an anticongruence on S such that

x ∈ A =⇒ xq = {y ∈ S : y �= x}, ¬(x ∈ A) =⇒ xq = A.

Notes 1.3
(1) Firstly, if q is a coequality on semigroup S, then the subset aq = {b ∈ S :
(a, b) ∈ q} (a ∈ S) is a strongly extensional subset of S. Indeed, let x be an
element of S such that x ∈ aq and let y be an arbitrary element of S. Then,
from (a, x) ∈ q we conclude (a, y) ∈ q or (y, x) ∈ q by cotransitivity of q. So,
we have that y ∈ aq or x �= y by consistency of relation q.

(2) If we want to have strongly extensional consistent classes of anticongru-
ence, we need another condition: Let q be anticongruence on semigroup S with
apartness. Then, classes aq (a ∈ S) are strongly extensional consistent subsets
of S if and only if (∀a, b ∈ S)((ab, a) �� q).
Let the condition (∀a, b ∈ S)((ab, a) �� q) holds. Let xy be an element of aq,
i.e. (xy, a) ∈ q. Thus, out of (xy, x) ∈ q or (x, a) ∈ q and (xy, y) ∈ q or
(y, a) ∈ q, we conclude that x ∈ aq and y ∈ aq. So, the subset aq is a consis-
tent subset of S. Opposite to the previous, let us suppose that the class aq is
a consistent subset of S for every a in S. Let (u, v) be an arbitrary element of
q. Then, out of (u, ab) ∈ q or (ab, a) ∈ q or (a, v) ∈ q it follows (u, v) �= (ab, a)
or the implication ab ∈ aq =⇒ a ∈ aq ∧ b ∈ aq holds. Last implication is
impossible because a �� aq holds. Hence, we have (u, v) �= (ab, a), i.e. the
condition (∀a, b ∈ S)((ab, a) �� q) holds.

2 The quotient of consistent subset by an element

Our first step in this paper is defining, in the Semigroup Theory, a new notion -
notion of quotient of consistent subset by an element - and sign for this notion:
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Definition 2.1 Let A be a consistent strongly extensional subset of S and
X ⊆ S. The quotient of A by subset X is [A : X] = {a ∈ S : (∃x ∈ X)(ax ∈
A)}. For X = {x} we put [A : x] instead of [A : {x}]. In this case we say that
[A : x] is the quotient of strongly extensional subset A by an element x of S.

In the following assertions 2.2-2.7, we will describe some properties of those
subsets.

Theorem 2.2
(0) [A : X] ⊆ A
(1) X ∩ A = ∅ =⇒ [A : X] = ∅ ;
(2) ∅ �= [A : X] ⇐⇒ (AX �= ∅ ∧ AX ∩ A �= ∅);
(3) [A : X] �= A ⇐⇒ (∃b ∈ A)(∃x ∈ X)(xb �� A);
(4) The set [A : X]′ is an ideal of semigroup S and

[A : X]′ = {a ∈ S : aX ⊆ A}(= (A : X))

holds.

Proof : (4) At first, the subset [A : X]′ is an ideal of subset S by Remark
1.1. Secondly, let a be an element of (A′ : X), i.e. let aX ⊆ A′ and let u
be an arbitrary element of [A : X]. Then, there exists an element x of X
such that ux ∈ A (and ax �� A). On the other hand, as the subset A is a
strongly extensional subset of S we have ux �= ax ∨ ax ∈ A. So, it has to
be ux �= ax because of ax �� A. Therefore, u �= a, i.e. a �� [A : X]. Hence,
(A′ : X) ⊆ [A : X]′. Opposite to the previous, let a �� [A : X] hold and let v
be an arbitrary element of A. Then, we have v �= ax ∨ ax ∈ A for each x of
X. Out of ax ∈ A, we conclude a ∈ A ∧ x ∈ A, which is impossible. So, we
have aX ⊆ A′. �
Theorem 2.3 Let A and B be strongly extensional consistent subsets of semi-
group S and x ∈ S, X ⊆ S. Then:
(5) [A : X] is a strongly extensional consistent subset of S;
(6) A ⊆ B =⇒ [A : X] ⊆ [B : X];
(7) For family {B: B is strongly extensional consistent subsets of S} holds

∪[B : X] ⊆ [∪B : X];

(8) (∀n ∈ N)([A : xn+1] ⊆ [A : xn] ⊆ [A : x] ⊆ A);
(9) If A is a semifilter of S, then A = ∪{[A : x] : x ∈ A} holds; and
(10) If A is a (potent) semifilter of S (and n a natural number), then

[A : x2] = [A : x] ([A : xn] = [A : x])

holds.
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Proof : (5) Let a be an element of [A : X] and let b be an arbitrary element
of S. Then, there exists an element x of X such that axA. As A is a strongly
extensional subset of S, we have ax �= bx or bx ∈ A. Hence, a �= b or
b ∈ [A : X]. Let ab ∈ [A : X], i.e. let there exist an element x of X
such that abx ∈ A. As A is a consistent subset of S, we have ax ∈ A and
bx ∈ A. Therefore, a ∈ [A : X] and b ∈ [A : X]. So, the subset [A : X] is
a strongly extensional consistent subset of S. (10) By proposition (8) of this
theorem, we have [A : x2] ⊆ [A : x]. On the other hand, let a ∈ [A : x], i.e. let
ax ∈ A. Then (ax)2 ∈ A because A is a semifilter of S, and therefore, we have
ax2 ∈ A since A is a consistent subset of S. So, a ∈ [A : x2].�
In the next proposition we will give a very interesting property of the family
{[A : x] : x ∈ A} where A is a strongly extensional consistent filter of S. The
proof of that theorem is technical.

Theorem 2.4 Let A be a strongly extensional consistent subset of S. Then,
A is a filter of S if and only if for every x ∈ A we have [A : x] = A.

Proof :
(1) Let A be a filter. Then
a ∈ A =⇒ ax ∈ A (because x ∈ A and A is a filter in S)

⇐⇒ a ∈ [A : x].
(2) Let [A : x] = A holds for every x in S. Let a and b be elements of S. We
have

a ∈ A = [A : b] ∧ b ∈ A =⇒ ab ∈ A.�

In the following theorem we analyze situation when the subset A is a primary
subset of S.

Theorem 2.5 Let A be a primary strongly extensional consistent subset of S.
(1) If x ∈ cr(A), then [A : x] = A.
(2) If x ∈ A, then [A : x] is a primary subset of S and holds cr([A : x]) = cr(A).

Proof : (1) Let x ∈ cr(A) and let a be an arbitrary element of A. Then
ax ∈ A, because A is a primary consistent subset of S. So, we have a ∈ [A : x].
Hence, out of fact A ⊆ [A : x], we conclude A = [A : x].
(2) At first, we conclude that cr([A : x]) ⊆ cr(A). Let a be an arbitrary
element of cr(A) = cr(cr(A)). Then, (∃n ∈ N)(an ∈ cr(A) ∧ x ∈ A).
So, (∃n ∈ N)(xan ∈ A) and (∃n ∈ N)(an ∈ [A : x]). Finally, we have
a ∈ cr([A : x]). Therefore, we have cr([A : x]) = cr(A). Further on , let a be
an element of cr(A) = cr([A : x]) and b such that bx ∈ A. Then abx ∈ A and,
ab ∈ [A : x]. So, the quotient [A : x] is a primary subset of S. �
In the following proposition we analyze set [A : x] when strongly extensional

consistent subset A is the union of filters under A:
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Theorem 2.6 Let A = ∪F holds where the union is over all strongly exten-
sional consistent filters under A. Then, [A : x] is a potent semifilter of S .

Proof : Let a be an arbitrary element of [A : x], i.e. let ax ∈ A = ∪F . There
exists a filter F under A such that ax ∈ F , i.e. a ∈ [F : x] = F by Theorem
2. So, we have an ∈ F = [F : x] ⊆ [∪F : x] for every natural n. Therefore, the
set [A : x] is a potent semifilter of S. �
Corollary 2.7 Let A = ∪F holds where the union is over all strongly exten-
sional consistent detachable filters under A. Then, [∪F : x] = ∪F holds .

Proof :
[∪F : x] = F . Indeed, let a ∈ [∪F : x]. Then
a ∈ [∪Fk : x] ⇐⇒ ax ∈ ∪Fk

⇐⇒ (∃Fk)(ax ∈ Fk)
⇐⇒ (∃Fk)(a ∈ [Fk : x])
⇐⇒ a ∈ ∪[F : x].

If x ∈ Fk , then [Fk : x] = Fk (by Theorem 2.7). If ¬(x ∈ Fk), then [Fk : x] = ∅
(by Theorem 2.5 (2)). Let B = {k : ¬(x ∈ Fk)}. Then we have

[∪k∈AFk : x] = ∪k∈BFk. �

If we try to make demands weak in the previous proposition, we have to give
up from the demand x ∈ ∪F . Indeed, we have:

Theorem 2.8 Let A = ∪Q be a strongly extensional consistent subset of S
which is union of primary strongly extensional consistent subsets of under A
such that ∅ �= [A : x] �= A. Then, there exists a filter F of S under A such that
x �� F .

Proof : There exists an element y of A such that y �� [A : x]. Hence,
y ∈ (A′ : x), i.e. x ∈ (A′ : y) = [A : y]′. Let A = ∪Q holds where Q are
primary strongly extensional consistent subsets of S under A. Then, there
exists a primary subset Q of S such that y ∈ Q. Therefore, the subset [Q : y]
is a primary subset of S such that cr([Q : x]) = cr(Q) by point (2) of Theorem
2.5. Since

cr(Q) = cr([Q : y]) ⊆ [Q : y] ⊆ [∪Q : y] = [A : y],

we have [A : y]′ ⊆ cr(Q)′. Therefore, x �� cr(Q). �

3 Constructions of maximal strongly extensional sub-
sets

In the following several propositions (3.1- 3.7) we describe constructions (with-
out the axiom of choose) the maximal strongly extensional consistent subset
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C(a) of S such that a �� C(a) (Theorem 3.5) and the maximal strongly ex-
tensional ideal B(a) of S such that a �� B(a) (Theorem 3.7) for any a in S.
These results themselves are interesting.

Lemma 3.1 Let a and b be elements of S. Then the set C(a) = {x ∈ S1 : x ��
SaS} is a consistent subset of S such that :
(i) a �� C(a) ;
(ii) C(a) �= ∅ =⇒ 1 ∈ C(a) ;
(iii) Let a be an invertible element of S. Then C(a) = ∅ ;
(iv) (∀x, y ∈ S)(C(a) ⊆ C(xay));
(v) C(a) ∪ C(b) ⊆ C(ab) .

Proof :
(0) xy ∈ C(a) ⇐⇒ xy �� SaS

=⇒ xy �� SaSy ∧ xy �� xSaS
=⇒ y �� SaS ∧ x �� SaS
⇐⇒ y ∈ C(a) ∧ x ∈ C(a).

(1) Let x be an arbitrary element of C(a). Then, x �� SaS, and thus, x �= a.

(2) Suppose that C(a) �= ∅. Then, there exists the element x of S such that
x ∈ C(a). Thus, x · 1 ∈ C(a) and we have 1 ∈ C(a) .

(3) Let a be an invertible element of S. Then, there exists the element b
of S such that ab = 1. If C(a) �= ∅ , then, by (2), 1 ∈ C(a). Therefore,
a ∈ C(a) ∧ b ∈ C(a), what is impossible. So, C(a) = ∅.
(4) Let x, y be arbitrary elements of S and let u �� SaS. Then, u �� SxayS.

Therefore, C(a) ⊆ C(xay) .

(5) Out of (4), it immediately follows C(a) ⊆ C(ab) ∧ C(b) ⊆ C(ab) =⇒
C(a) ∪ C(b) ⊆ C(ab). �
Let a be an arbitrary element of a semigroup S with apartness. The con-

sistent subset C(a) is called principal consistent subset of S generated by a.
We introduce relation f , defined by (a, b) ∈ f ⇐⇒ b ∈ C(a). In the following
theorem we will give some description of the relation f :

Lemma 3.2 The relation f has the following properties
(vi) f is a consistent relation ;
(vii) (a, b) ∈ f =⇒ (∀x, y ∈ S)((xay, b) ∈ f) ;
(viii)(a, b) ∈ f =⇒ (∀n ∈ N)((an, b) ∈ f) ;
(ix) (∀x, y ∈ S)((a, xby) ∈ f =⇒ (a, b) ∈ f) ;
(x)(∀x, y ∈ S)¬((a, xay) ∈ f) .

Proof : (7) Let (a, b) ∈ f , i.e. let b ∈ C(a) and let x, y be arbitrary elements
of S. Then b ∈ C(xay) by (iv). So, by definition of f , we have (xay, b) ∈ f .

(9) Let (a, xby) ∈ f holds for some a, b, x, y in S. Then, xby ∈ C(a) and
b ∈ C(a) , because C(a) is a consistent subset of S, i.e. (a, b) ∈ f .
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(10) Suppose that (a, xay) ∈ f holds. Then, (xay, xay) ∈ f by (vi), which is
impossible. So, for every elements x and y ¬((a, xay) ∈ f) holds. �
We can construct the cotransitive relation c(f) =

⋂
n∈N

nf as cotransitive
fulfillment of the relation f ([5],[6],[11]). As corollary of this theorem we have
the following results:

Lemma 3.3 The relation c(f) satisfies the following properties:
(xi) c(f) is a consistent relation on S ;
(xii) c(f) is a cotransitive relation ;
(xiii) (∀x, y ∈ S)((a, xay) �� c(f)) ;
(xiv) (∀n ∈ N)((a, an) ∈ c(f)) ;
(xv) (∀x, y ∈ S)((a, b) ∈ c(f) =⇒ (xay, b) ∈ c(f)) ;
(xvi) (∀n ∈ N)((a, b) ∈ c(f) =⇒ (an, b) ∈ c(f)) ;
(xvii) (∀x, y ∈ S)((a, xby) ∈ c(f) =⇒ (a, b) ∈ c(f)).

Proof : (xi) and (xii) follows immediately from definition of c(f).

(xiii) Let a, x, y be elements of a semigroup S and let (u, v) be an arbitrary
element of c(f). Then, (u, a) ∈ c(f) ∨ (a, xay) ∈ c(f) ∨ (xay, v) ∈ c(f). Thus,
u �= a ∨ (a, xay) ∈ f ∨ xay �= v. So, (u, v) �= (a, xay) because ¬((a, xay) ∈ f)
by (x).

(xiv) Follows from (xiii).

(xv) Let a, b, x, y be elements of S such that (a, b) ∈ c(f). Then, (a, xay) ∈
c(f) ∨ (xay, b) ∈ c(f) and (xay, b) ∈ c(f) by (xiii).

(xvi) Follows from (xv).

(xvii) (a, xby) ∈ c(f) =⇒ (a, b) ∈ c(f) ∨ (b, xby) ∈ c(f)
=⇒ (a, b) ∈ c(f) by (xiii). �

Corollary 3.3.1 The relation c(f) is a positive potent-lower quasi-antiorder
relation on S.

Proof immediately follows from (xi) - (xiv) of the Lemma 3.3. �
For an element a of a semigroup S and for n ∈ N we introduce the following

notations

An(a) = {x ∈ S1 : (a, x) ∈ nf}, C(a) = {x ∈ S1 : (a, x) ∈ c(f)}

Bn(a) = {y ∈ S1 : (y, a) ∈ nf}, B(a) = {y ∈ S1 : (y, a) ∈ c(f)}.
In the following two lemmas we will present some basic characteristics of these
sets.

Lemma 3.4 Let a and b be elements of a semigroup S. Then:
(xvii) A1(a) = C(a) ;
(xviii) An+1(a) ⊆ An(a) ;
(xix) An+1(a) = {x ∈ S1 : S1 = An(a) ∪ B1(x)} ;
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(xx) C(a) =
⋂

n∈N An(a);
(xxi) a �� C(a) ;
(xxii) C(a) ∪ C(b) ⊆ C(ab) ;
(xxiii) The set C(a) is a strongly extensional consistent subset of S.

Proof. (18)- (19) Let x be an arbitrary element of An+1(a). Then, for
every t ∈ S we have (a, t) ∈ nf ∨ (t, x) ∈ f . So, t ∈ An(a) ∪ B1(x), i.e.
S1 = An(a) ∪ B1(x). As (x, x) �� f , we have (a, x) ∈ nf , i.e. x ∈ An(a).

(21) If x is an element of C(a), then (a, x) ∈ c(f). Thus, (a, x) �= (a, a)
because the relation c(f) is cotransitive. Therefore, x �= a.

(22) x ∈ C(a) ∨ x ∈ C(b) ⇐⇒ (a, x) ∈ c(f) ∨ (b, x) ∈ c(f)
=⇒ (a, ab) ∈ c(f) ∨ (ab, x) ∈ c(f) ∨ (b, ab) ∈

c(f) ∨ (ab, x) ∈ c(f)
=⇒ (ab, x) ∈ c(f) (by (xiii))
⇐⇒ x ∈ C(ab).

(23) Let x and y be arbitrary element of S such that xy ∈ C(a), i.e. (a, xy) ∈
c(f). Thus,out of (a, xy) ∈ c(f) we have

((a, x) ∈ c(f) ∨ (x, xy) ∈ c(f)) ∧ ((a, y) ∈ c(f) ∨ (y, xy) ∈ c(f)).

Further on, it follows x ∈ C(a) ∧y ∈ C(a) (by (xiii)). Let x ∈ A(a) and let y be
an arbitrary element of S. Then, (a, x) ∈ c(f). Thus, (a, y) ∈ c(f) ∨ (y, x) ∈
c(f). So, y ∈ C(a) ∨ y �= x. �
In the following theorem we give the proof (without the axiom of choose) that
strongly extensional consistent subset C(a) is the maximal for any a in S such
that a �� C(a).

Theorem 3.5 Let a be an element of a semigroup S. Then, the set C(a) is
the maximal strongly extensional consistent subset of S such that a �� C(a).

Proof : Let T be a consistent strongly extensional subset of S such that a �� T .
Let t be an arbitrary element of T and let u, v ∈ S. Then, t �= uav ∨ uav ∈ T
holds. As uav ∈ T is impossible because T is a consistent subset of S such
that a ∈ T , then A1(a) = C(a) = {x ∈ S1 : x �� SaS} ⊇ T . Let us as-
sume that An(a) ⊇ T . Let t be an arbitrary element of T and let z be an
arbitrary element of S. Then, uzv ∈ T or uzv �= t for every u, v in S. Thus,
z ∈ T ⊆ An(a) or uzv �= t for every u, v in S. So, z ∈ An(a)∨t ∈ A1(z). There-
fore, z ∈ An(a)∪B1(t). This means that t ∈ An+1(a). Thus, by induction, we
obtain that An(a) ⊇ T for every n ∈ N , whence C(a) ⊇ T . Hence, C(a) is the
maximal strongly extensional consistent subset of S such that a �� C(a). �
Symmetrically, we have

Lemma 3.6 Let a and b be elements of a semigroup S. Then:
(a) B(a) = {y ∈ S1 : b ∈ C(y)};
(b) Bn+1(a) ⊆ Bn(a) ;
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(c) Bn+1(a) = {y ∈ S1 : S = Bn(a) ∪ A1(x)};
(d) B(a) =

⋂
n∈N Bn(a) ;

(e) a �� B(a) ;
(f) B(ab) ⊆ B(a) ∩ B(b)
(g) The set B(a) is a strongly extensional ideal of S.

Proof.
(f) x ∈ B(ab) ⇐⇒ ab ∈ A(x)

=⇒ a ∈ A(x) ∧ b ∈ A(x)
⇐⇒ x ∈ B(a) ∧ x ∈ B(b)
⇐⇒ x ∈ B(a) ∩ B(b).

(g) x ∈ B(a) ∨ y ∈ B(a) ⇐⇒ a ∈ A(x) ∨ a ∈ A(y)
⇐⇒ a ∈ A(x) ∪ A(y)
=⇒ a ∈ A(xy)
⇐⇒ xy ∈ B(a).

Let x be an arbitrary element of S and let y ∈ B(a). Then,
(y, a) ∈ c(f) =⇒ (y, x) ∈ c(f) ∨ (x, a) ∈ c(f)

=⇒ y �= x ∨ x ∈ B(a). �
Theorem 3.7 Let a be an element of a semigroup S. Then, the set B(a) is
the maximal strongly extensional ideal of S such that a �� B(a).

Proof : Let J be a strongly extensional ideal of S such that a �� J . Then,
a �� SJS, i.e. J ⊆ B1(a). Let us assume that J ⊆ Bn(a). Let z be an arbitrary
element of S and let y ∈ J ⊆ Bn(a). Then, z �= uyv or z ∈ J for every u, v in
S because J is a strongly extensional ideal of S. Thus, z ∈ Bn(a) ∨ z ∈ A1(y),
i.e. y ∈ Bn+1(a). So, J ⊆ Bn+1(a). By induction, we have J ⊆ B(a). There-
fore, the set B(a) is the maximal strongly extensional ideal of S such that
a �� B(a). �
Note that in the above theorem construction of the maximal strongly exten-

sional ideal of S such that a �� B(a) is done without the axiom of choose.

The next proposition gives some interesting equalities about relation c(f):

Theorem 3.8 Let S is a semigroup with apartness. Then, the following con-
ditions are equivalent :
(1) ∀(a, b ∈ S)((ab, a) �� c(f) ∨ (ab, b) �� c(s));
(2) (∀a, b ∈ S)(A(ab) = A(a) ∪ A(b));
(3) (∀a, b ∈ S)(B(ab) = B(a) ∩ B(b));
(4) A(a) is a filter of S for every a in S;
(5) B(b) is a completely prime ideal of S for every b in S;
(6) (∀a, b ∈ S)((a, b) �� c(f) ∨ (b, a) �� c(f)).

Proof.
(6) =⇒ (1). This follows immediately.
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(1) =⇒ (6). Let a, b ∈ S and let (u, v) be an arbitrary element of c(f). Then,
(u, a) ∈ c(f) or (a, ab) ∈ c(f) or (ab, b) ∈ c(f) or (b, v) ∈ c(f). By (xi), (xiii)
and by (ab, b) �� c(f), it follows that (u, v) �= (a, b). In a similar way we prove
that by (ab, a) �� c(f), it follows that (u, v) �= (b, a).

(2) ⇐⇒ (5). Let xy ∈ B(b). Then, b ∈ A(xy) = A(x)∪A(y). Thus, b ∈ A(x)
or b ∈ A(y). So, x ∈ B(b) or y ∈ B(b). If x be an arbitrary element of A(ab),
then ab ∈ B(x) and a ∈ B(x) ∨ b ∈ B(x) because B(x) is a completely prime
ideal of S. Therefore, x ∈ A(a) ∪ A(b).

(3) ⇐⇒ (4). Out of (y ∈ B(a) ∩ B(b) ⇐⇒ y ∈ B(a)) and (y ∈ B(b) ⇐⇒ a ∈
A(y)) and (b ∈ A(y) ⇐⇒ ab ∈ A(y) ⇐⇒ y ∈ B(ab)), immediately follows the
equivalence (3) ⇐⇒ (4).

(4) =⇒ (1). Let (u, v) be an arbitrary element of c(f) and let a, b ∈ S. Then,
we have
(u, v) ∈ c(f) =⇒ ((u, ab) ∈ c(f) ∨ (ab, a) ∈ c(f) ∨ (a, v) ∈ c(f)) ∧ ((u, ab) ∈
c(f) ∨ (ab, b) ∈ c(f) ∨ (b, v) ∈ c(f))
=⇒ (u �= ab ∨ a ∈ A(ab) ∨ a �= v) ∧ (u �= ab ∨ b ∈ A(ab) ∨ b �= v)
=⇒ ((u, v) �= (ab, a) ∨ (u, v) �= (ab, b)) ∨ ab ∈ A(ab) (A(ab) is a filter)
=⇒ (ab, a) �� c(f) ∨ (ab, b) �� c(f).

(1) =⇒ (4). x ∈ A(a) ∧ y ∈ A(a) ⇐⇒ (a, x) ∈ c(f) ∧ (a, y) ∈ c(f)
=⇒ ((a, xy) ∈ c(f) ∨ (xy, x) ∈ c(f)) ∧ ((a, xy) ∈ c(f) ∨ (xy, y) ∈ c(f))
=⇒ xy ∈ A(a).

(3) =⇒ (2). x ∈ A(ab) ⇐⇒ (ab, x) ∈ c(f)
=⇒ ((ab, a) ∈ c(f) ∨ (a, x) ∈ c(f)) ∧ ((ab, b) ∈ c(f) ∨ (b, x) ∈ c(f))
=⇒ ab ∈ B(a) ∩ B(b) = B(ab) ∨ x ∈ A(a) ∨ x ∈ A(b)
=⇒ x ∈ A(a) ∪ A(b).

(1) =⇒ (5). Suppose that xy ∈ B(b). Thus, (xy, b) ∈ c(f) implies (xy, x) ∈
c(f) ∨ (x, b) ∈ c(f) and (xy, y) ∈ c(f) ∨ (y, b) ∈ c(f). Therefore, by (1), we
have y ∈ B(b) or x ∈ B(b). So, the ideal B(b) is a completely prime ideal of
S.

(3) =⇒ (6). Let (3) holds and let (u, v) be an arbitrary element of c(f).
Then, (u, a) ∈ c(f) ∨ (a, b) ∈ c(f) ∨ (b, v) ∈ c(f) and (u, b) ∈ c(f) ∨ (b, a) ∈
c(f) ∨ (a, v) ∈ c(f) for a, b ∈ S. If (b, a) ∈ c(f) ∧ (a, b) ∈ c(f), i.e. if b ∈ B(a)
and a ∈ B(b), then ab ∈ B(a)∩B(b) = B(ab) (because the sets B(a) and B(b)
are ideals of S), what is impossible. So, (u, v) �= (b, a) ∨ (u, v) �= (a, b). �
Net us note that we do not know that the relation c(f) is compatible with the
semigroup operation on S, but we know that it is the maximal positive lower-
potent quasi-antiorder relation on S. So, we do not know that the coequality
q = c(f) ∪ (c(f))−1 is an anti-congruence on S.
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4 Congruence and partial order generated by the quo-
tient

In this part we shall analyze situation when [A : x] ⊆ [A : y] for some elements
x and y. At the end of this investigation we give a conclusion which follows
from condition [A : x] ⊆ [A : y]

Theorem 4.1 Let x and y be elements of semigroup S. If for every strongly
extensional consistent subset A of S [A : x] ⊆ [A : y] holds, then C(x) ⊆ C(y).

Proof. Let x and y be elements of S such that [A : x] ⊆ [A : y]. Since
C(y) is a strongly extensional consistent subset of S, by hypothesis, we have
[C(y) : x] ⊆ [C(y) : y]. Since y �� C(y) must be [C(y) : y] = ∅. Then,
[C(x) : y] = ∅ too, and ¬(y ∈ C(x)). Indeed, if y ∈ C(x), then will be 1 ∈
[C(x) : y] = ∅, what it is impossible. Therefore, it must be ¬(y ∈ C(x)). Let
u be an arbitrary element of C(x). Since C(x) is a strongly extensional subset
of S, then u �= y ∨ y ∈ C(x). So, y �� C(x) and C(x) is a strongly extensional
subset of S such that y �� C(x). Therefore, C(x) ⊆ C(y) holds because C(y)
is the maximal strongly extensional subset of S such that y �� C(y). �
Theorem 4.2 Let A be a strongly extensional semifilter in S. Then, the

relation e, defined by

(x, y) ∈ e ⇐⇒ [A : x] = [A : y],

is a semillatice congruence on S.

Proof : Let A be a strongly extensional consistent subset of semigroup S.
Then, the relation e on S, defined by (x, y) ∈ e ⇐⇒ [A : x] = [A : y], has the
following properties:

(1) The relation e is an equality relation on S.

(2) Let (x, y) ∈ e and a be an arbitrary element of S. Then [A : ax] = [A : ay].
Indeed,
t ∈ [A : ax] ⇐⇒ at ∈ [A : x] = [A : y]

⇐⇒ t ∈ [A : ay].
So, the relation e is a congruence on S.

(3) If A is a semifilter of S, then [A : x] = [A : x2] , by (10) of Theorem 2.6.
So, if A is a semifilter in S, then for all x ∈ S we have (x, x2) ∈ e. Further on,
by commutatively of semigroup S, we have that e is a semilattice congruence
on S. �
Theorem 4.3 Let A be a strongly extensional semifilter in S. Then, the

relation α, defined by

(x, y) ∈ α ⇐⇒ (x, xy) ∈ e,
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is a partial order on semigroup S compatible with the semigroup operation on
S.

Proof : Let A be a semifilter of S and let we define relation α by the following
equivalence (x, y) ∈ α ⇐⇒ (x, xy) ∈ e, where x, y ∈ S. We conclude:
(i) (x, x) ∈ α because (x, x2) ∈ e. So, α is a reflexive relation on S.

(ii) If (x, y) ∈ α and (y, x) ∈ α, i.e. if (x, xy) ∈ e and (y, yx) ∈ e, then
(x, y) ∈ e. So, relation α is antisymmetric.

(iii) Let (x, y) ∈ α and (y, z) ∈ α, i.e. let (x, yx) ∈ e and (y, yz) ∈ e. Thus,
(xz, yxz) ∈ e and (xy, xyz) ∈ e, so, (xz, xy) ∈ e. Therefore, out of (x, xy) ∈ e
and (xy, xz) ∈ e we conclude that (x, xz) ∈ e, i.e. the relation α is a transitive
relation on S.

(iv) Let (x, y) ∈ α, i.e. let (x, xy) ∈ e, i.e. let [A : x] = [A : xy]. Then,
[A : xz] = [A : xzyz]. Indeed, at first, we have [A : xzyz] ⊆ [A : xz] because
the set A is a consistent subset of S. Secondly, let t ∈ [A : xz], i.e. let txz ∈ A.
Then, (txz)(txz) ∈ A (A is a semifilter). Thus, txztz ∈ [A : x] = [A : xy]
and txztzxy ∈ A. Out of this we conclude that txzyz ∈ A (because A is
a consistent subset of S). So, t ∈ [A : xzyz]. Finally, we have that α is
compatible with the semigroup operation. �
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